CHEMICAL KINETICS [TEST PAPER]
1. Half-life of a second order reaction is 50 seconds. 25% of the reaction occurs in
(A) 15.6 sec (B) 16.6 sec (C) 20.6 sec (D) 5.6 sec
 2. The rate constant of a first order reaction is 1.54x10⁻³ sec⁻¹. The half-life time will be:- (A) 100 sec (B) 250 sec (C) 450 sec (D) 400 sec
3. Select the correct statements:-
(A) The order of a reaction can be fractional but molecularity can not
(B) The molecularity of a reaction can be fractional but order can not
(D) Neither order nor molecularity can be fractional
4. For third order reaction, 3A \rightarrow Product, with 0.1 M initial concentration, $t_{1/2}$ is 8 hour and 20 minutes. The rate
constant of the reaction is $(2) = 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2$
(A) $5.0 L^2 mol^{-2}s^{-1}$ (B) $5.0x10^{-2} L^2 mol^{-2}s^{-1}$
5 Chemical relaxation method can be used for studying the kinetics of which of the following reaction:-
(A) $H_2 + Br_2 \longrightarrow 2HBr$
(B) $CH_3I + H_2O \longrightarrow CH_3OH + HI$
(C) Oxidation of $Fe+^2$ by $K_2C_{r_2}O_7$
(D) $H^+ + OH^- \rightarrow H_2O$
6. One of the assumptions made in conventional activated complex theory is
(A) Equilibrium is maintained between the reactants and the activated complex
(B) Equilibrium is maintained between the reactants and the products
(C) Equilibrium is maintained between the reactants, activated complex and the products
(b) Activated complex decomposes in to product infough vibrational degree of freedom 7. For a reaction the rate constant k at 27° was found to be K =5 4x10 ¹¹ e ⁻⁵⁰ . The activation energy of the reaction is
about
(A) 50 J Mol ⁻¹ (B) 415 J Mol ⁻¹ (C) 15000 J Mol ⁻¹ (D) 125000 J Mol ⁻¹
8. For a given first order reaction, the reactant reduces to $1/4^{th}$ its initial value in 10 minutes. The rate constant of the
reaction is (A) 0.1286 min ⁻¹ (P) 0.0602 min ⁻¹ (C) 0.1286 mol 1 ⁻¹ min ⁻¹ (D) 0.0602 mol 1 ⁻¹ min ⁻¹
9. According to conventional activated complex theory, for elementary bimolecular reactions, the molar entropy of
activation is
(A) Positive (B) zero
(C) negative (D) positive for endothermic and positive for exothermic reactions
10. For a reaction involving two steps given below
$A \rightarrow 2B$ $A + B \rightarrow P$
Assume that that the first step attains equilibrium rapidly. The rate of formation of P is proportional to
(A) $[A]^{1/2}$ (B) $[A]$ (C) $[A]^2$ (D) $[A]^{3/2}$
11. For a first order reaction $A \rightarrow P$, the temperature (T) dependent rate constant (k) was found to follow the equation
$\log k = -(2000)/T + 6.0$
The pre-exponential factor A and the activation energy E_a , respectively, are
(A) 1.0 × 10 S and 9.2 kimol (B) 6.0 S and 16.6 kimol (C) 1.0 × 10^6 s^{-1} and 16.6 kimol (D) 1.0 × 10^6 s^{-1} and 38.3 kimol ⁻¹
12. For the reaction $A + B \rightarrow$ products, it is observed that(i) On doubling the concentration of A only, the rate of
reaction is also doubled.(ii) On doubling the initial concentration of both A and B, there is change by a factor of 8
in the rate of reaction. The rate of reaction is given by $(A) Bate = b [A] [B] = (B) rate = b [A]^2 [B]$
(A) $\kappaate = \kappa [A] [B]$ (B) $rate = \kappa [A]^{-} [B]$ (C) $rate = \kappa [A] [B]^{-}$ (D) $rate = \kappa [A]^{-} [B]^{-}$
1 RAJSI CHEMISTRY POINT, NEAR GOPALPURA FLYOVER, JAIPUR Visit us @ www.rajsichemistrypoint.com

dīvu- 1			dቡ	1					
13. For the reaction, $N_2 + 3H_2 \rightarrow 2NH_3$, if $\frac{dt}{dt} = 2$	× 10 ⁻⁴ mol L ⁻	$1^{1}s^{-1}$, the v	value of – dt	would be					
(A) $4 \times 10^{-4} \text{ mol } \text{L}^{-1} \text{ s}^{-1}$	(B) 6 × 1	0 ^{−4} mol L	- ¹ s ⁻¹						
(C) 1×10^{-4} mol L ⁻¹ s ⁻¹	(D) 3 × 2	10 ⁻⁴ mol	$L^{-1} s^{-1}$						
14. Half life period of a first order reaction is 1386 sectors $(A) \cap C \times 10^{-2} c^{-1}$	onds. The spectrum $-3 c^{-1}$	ecific rate	e constant of t	ne reaction is					
(A) 0.5×10^{-2} s (B) 0.5×10^{-1} (D) 5.0 x 10	5 1 ⁻³ s ⁻¹								
15. The half life period of a first order chemical reaction	n is 6.93 min	utes. The	time required	for the comple	tion of 99%				
of the chemical reaction will be (log 2 = 0.301)									
(A) 230.3 minutes (B) 23.03 m	ninutes								
(C) 46.06 minutes (D) 460.6 m	ninutes			.					
16. Consider a hypothetical reaction $2A + B \rightarrow$ product	s. Given the	following	g information of	concerning the in	itial rate of				
the reaction with different initial concentrations: v	What is the ra	te law tr	hat most nearly	accounts for the	ese data?				
(A) Rate= $k[A]^2[B]$ (B) Rate= $k[A][B]$			[A] (mole/L)	[B] (mole/L)	Initial Rate				
(C) Rate= $k[A][B]^2$ (D) Rate= $k[A]^2[B]^2$	Exp	1	0.020	0.020	4.20×10^{-3}				
	Exp	2	0.040	0.020	1.68×10^{-2}				
	Exp	5	0.040	0.040	0.72 × 10				
17. A change in temperature from 10°C to 20°C is four	nd to double	the rate	of a given che	mical reaction. H	low did this				
change affect the reacting molecules?									
(A) It doubled their average velocity. (B) It doubled their average energy									
(C) It doubled the number of collisions	per second	4							
(D) It doubled the proportion of molecules poss	sessing at leas	t the mi	n. energy requ	ired for the react	ion				
18. During the kinetic study of the reaction, $2A + B \rightarrow C$: + D, followir	g results	were obtaine	d:					
Run [A]/mol L^{-1} [B]/mol L^{-1} I	nitial rate of	formatio	n of D [mol L^{-1}	min ⁻¹]					
I 0.1 6	5.0×10^{-3}								
II 0.3 0.2 7	7.2 × 10 ⁻²								
	2.88×10^{-1}	\downarrow							
	2.40 × 10 ²								
Based on the above data which one of the following (Λ) Based = $k [\Lambda]^2 [B]^2$ (B) rate = $k [\Lambda] [B]^2$	(C) Rate	- k[v] ₅ [i	B] (D) rat	0 - k[1][B]					
19. If the concept of half life is generalized to quarter lit	fe of a first o	der cher	mical reaction	it will be equal to					
(A) ln2/k (B) ln4/k) (C) 4/k		(D) 1/4	k					
20. The half life for the acid-catalyzed hydrolysis of suc	rose to form	glucose	and fructose, v	vhich is first orde	er overall, is				
3.20 h at 25°C. What is the rate constant for the re	eaction at this	tempera	ature?						
(A) $6.02 \times 10-5 \text{ s}^{-1}$ (B) $8.68 \times 10-5 \text{ s}^{-1}$	(C) 0.21	.7 s⁻¹	(D) 2.6	1 × 10-5 s ⁻¹					
21. A catalyst functions by:									
(A) lowering the energy of the reactants (B) lo	wering the e	nergy of	the products						
(C) providing a reaction path with a lower activation	on energy								
(D) increasing the equilibrium constant. 22 The gas phase reaction $Y + Y \rightarrow Z$ has a react	ion rate whi	ch is av	perimentally o	bserved to	follow the				
22. The gas phase reaction $X + T \rightarrow Z$ has a reaction rate which is experimentally observed to 1010W the relationship of rate = $k[X]^2[V]$ if the concentration of X is tripled and the concentration of V is doubled the									
reaction rate would be increased by a factor of:									
(A) 6 (B) 9 (C) 12 (D) 18									
23. For a reaction the plot of concentration of reactant against time is a straight line with negative slope. The order of									
the reaction is									
(A) 2 (B) -1	(C) 1		(D) zero					
			Vicit uc @ ··	nu raisisham:	strupoint com				
	A PLIOVER, J	AIFUR			su yponit.com				

24. Determine the rate law for the reaction, $2ICI^{-} + H2 \longrightarrow I_2 + 2HCI$, from the following initial rate data: [ICI]₀ $[H_2]_0$ Initial Rate(Ms⁻¹) (A) $R = k[ICI]^2$ (B) $R = k[H2]^2$ (A) $\kappa = \kappa [ICI]^{-1}$ C) R = k[ICI][H2]² 0.250 0.500 2.04x 10⁻² (D) R = k[ICI][H2]4.08x 10⁻² 0.500 0.500 0.125 0.125 2.55 x 10⁻³ 0.125 0.250 5.09×10^{-3} 25. For the reaction scheme $A + B \xrightarrow{k_1} C; B + C \xrightarrow{k_3} D$ the rate equation for the formation of D is given as (a) $\frac{d[D]}{dt} = \frac{k_1 k_3 C_A C_B}{k_2 + k_3 C_B}$ (b) $\frac{d[D]}{dt} = \frac{k_1 k_2 k_3 C_A C_B}{k_2 + k_3 C_B}$ (c) $\frac{d[D]}{dt} = \frac{k_1 k_3 C_A C_B^2}{k_2 + k_3 C_B}$ (d) $\frac{d[D]}{dt} = \frac{k_1 k_3 C_A C_B^2}{k_2 k_3 + k_3 C_B}$ 26. For the reaction of the type $X \xrightarrow{k_1} Y$, the correct rate expression is ([X]₀ and [X] corresponds to be concentration of X at time t = 0 and t = t, respectively) (a) $-\frac{d[X]}{dt} = k_1[X]_0 - (k_1 + k_2)[X]$ (b) $-\frac{d[X]}{dt} = (k_1 + k_2)[X] - k_2[X]_0$ (c) $-\frac{d[X]}{dt} = (k_1 + k_2)[X]_0 - k_1[X]$ (d) $-\frac{d[X]}{dt} = (k_1 - k_2)[X] - k_1[X]_0$ **27**. Consider an exothermic reaction A $\underbrace{k_1}_{k_1}$ I as the temperature increases (b) k_1 increases, k_{-1} decreases, and k_1/k_{-1} increases (a) k_1 , k_{-1} and k_1/k_{-1} increases (c) k_1 , k_{-1} increases and k_1/k_{-1} decreases (d) k_1 and k_{-1} decrease, and k_1/k_{-1} increases 28. In the following sequence of reactions, the energy poor molecule A* in the assuming collision is robbed off enough energy to be deactivated as $A + A = \frac{k_1}{k_2} A + A^*$; $A^* = \frac{k_a}{k_3} B + C$ What is the steady state concentration [A*] equal to ? (a) $\frac{k_1[A]}{k_2[A]+k_3}$ (b) $\frac{k_1[A]^2}{k_2[A]+k_3}$ (c) $\frac{k_2[A]+k_3}{k_2[A]^2}$ (d) None of these **29.** The reversible reactions S 22P is catalyzed by a catalyst. The equilibrium constant $K_{eq} = [P]/[S]$ is 2×10³. The forward rate constant was found to be 5×10⁴ sec⁻¹ and 4×10⁻⁶ sec⁻¹ in the presence and in the absence of the catalyst respectively. What is the expected rate constant for the reverse reaction in the absence of the catalyst? (b) $5 \times 10^{-9} \text{ sec}^{-1}$ $5 \times 10^{8} \text{ sec}^{-1}$ (c) $0.8 \times 10^{-10} \text{ sec}^{-1}$ (d) $5 \times 10^{-9} \text{ sec}^{-1}$ (a) **30.** Identify the transition state which determines the rate of the reaction from the free energy diagram. Reaction Coordinate (a) (b) II (d) IV Т (c) III RAJSI CHEMISTRY POINT, NEAR GOPALPURA FLYOVER, JAIPUR Visit us @ www.rajsichemistrypoint.com 3

- (A) **2** k_b[NO][O₂]
- **2** $k_a k_b [NO]^2 [O_2] / k_a + k_b [O_2]$ (B)
- **2** $k_{b}[NO]^{2}[O_{2}]$ (C)
- $ka[NO]^2[O_2]$ (D)

table. The order of the reaction withrespect to P,Q and R respectively is

S.No.	[P]M	[Q]M	[R]M	Initial Rates [Ms ⁻¹]
1	0.2	0.5	0.4	8.0x10-5
2	0.4	0.5	0.4	3.2x10-4
3	0.4	2.0	0.4	1.28x10-3
4	0.1	0.25	1.6	4.0x10-5

- (A) 2,2,1
- (B) 2,1,2
- (C) 2,1,1
- (D) 1,1,2
- 41. The reaction between chloroform $CHCl_3$ (g) and chlorine Cl_2 (g) to form CCl_4 (g) is believed to occur by this series of steps:
 - Step 1: $Cl_2(g) \longrightarrow Cl(g) + Cl(g)$
 - Step 2: $CHCl_3(g) + Cl(g) \longrightarrow$ $CCI_3(g) + HCI(g)$
 - Step 3: $CCl_3(g) + Cl(g) \longrightarrow CCl_4(g)$

If this reaction is first order in CHCl₃ and half order in Cl₂, which statement about the relative rates of step 1, 2 and 3 is correct?

- (a) Step 1 is the slowest
- (b) Step 1 and 2 must both be slow
- (c) Step 2 must be slower than step 1
- (d) Step 3 must be the slowest
- 42. The observed rate of a chemical reaction is substantially lower than the collision frequency. One or more of the following statements is/are true to account for this fact.
 - (A) The reactants do not have the required energy
 - (B) The partners do not collide in the proper orientation
 - (C) Collision complex exists for a very short time.
 - (D) Collision frequency over estimates the number of effective collisions
 - (a) A, B and C (b) A,B and C (c) B,C and D

(d) A, C and D

43. In a reaction, $A + B \rightarrow$ Product, rate is doubled when the concentration of B is doubled, and rate increases by a factor of 8 when the concentrations of both the reactants (A and B) are doubled, rate law for the reaction can be written as

A) Rate =
$$k[A][B]$$
 (B) Rate = $k[A]^{2}[B]$ (C) Rate = $k[A][B]^{2}$ (D) Rate = $k[A]^{2}[B]^{2}$

- **44.** For a first order reaction (A) \rightarrow products the concentration of A changes from 0.1M to 0.025 M in 40 minutes. The rate of reaction when the concentration of A is 0.01 M is:
- (A) 1.73×10^{-5} M/min (B) 3.47×10^{-4} M/min (C) 3.47×10^{-5} M/min (D) 1.73×10^{-4} M/min. **45.** The activation energy of a reaction at a given temperature is found to be 2.303 RT J mol⁻¹. The ratio of rate constant to the Arrhenius factor is (A) 0.1 (B) 0.01 (C) 0.001 (D) 0.02
- **46.** The time taken for 10% completion of a first order reaction is 20 min. Then, for 19% completion, the reaction will take (B) 60 mins (C) 30 mins (D) 50 mins

(A) 40 mins

5

RAJSI CHEMISTRY POINT, NEAR GOPALPURA FLYOVER, JAIPUR Visit us @ www.rajsichemistrypoint.com

 Which of the following kinetic plots would be the best to do to prove the reaction to be second order? (A) a plot of [NO₂] "s.t. (B) a plot of [NO₂] vs.t. (D) a plot of [NO₂] vs.t. (E) No unit. (E) Second. (D) such a plot cannot even a straight line with a positive siope. What is the order of reaction? (A) zero. (B) first. (C) second. (D) such a plot cannot even a the order of reaction increase when body temperature increases from 37°. (C) morall 16 a0°. (Forwal)? (A) 1.15 times. (B) 1.20 times. (C) 2.0 × 10¹ times. (D) 2.0 times. 61. The isomerization of cyclopropane follows first order kinetics. (A) 5.07 kl/mol (C) (C) 160 kl/mol (D) (D) 270 kl/mol (D) (D) 270 kl/mol (D) the dativation energy for the forward reaction is greater. (A) 1.15 times of for forward reaction is greater than the activation energy for the reverse reaction. (C) 1 for kl/mol (D) the activation energy for the forward reaction is greater than the activation energy for the reverse reaction. (D) the activation energy for t	57.	The reaction $2NO_2(g) \rightarrow 2$	NO(g) + $O_2(g)$ is suspected	ed to be second-order	in NO ₂ .	
 (A) a plot of [NQ₂]⁻¹ vs. t (B) a plot of [NQ₂] vs. t (C) a plot of [NQ₂] vs. t (D) a plot of [N		Which of the following kin	etic plots would be the b	pest to do to prove the	e reaction to be seco	nd order?
 (b) a plot of (NO₂) (x.1 (b) plot of (NO₂) (x.1 (c) plot plot plot plot plot of (NO₂) (x.1 (c) plot plot of (NO₂) (x.1 (c) plot plot plot plot plot of (NO₂) (x.1 (c) plot plot plot plot plot plot of (NO₂) (x.1 (c) plot plot plot plot plot plot plot plot		(A) a plot of $[NO_2]^{-1}v$	s.t (B) a plot of log $[NO_2]$ vs	s. t	
 2.4. Control the transfer of A alone was doubled, the rate increased by two times the unit of rate constant for this reaction is: (A) No unit (B) mol L² s⁻¹ (C) s⁻¹ (C) s⁻¹ (D) L⁻¹ s⁻¹ 5.7 For the chemical reaction A → C, a plot of 1/[A] versus time was found to give a straight line with a positive slope. What is the order of reaction (D) such a plot cannot reveal the order of reaction increase when body temperature increases from 37°C (normal 10 adVC (fever)² (A) a rate of this reaction is 50 kJ/mol, by what factor (how many times) will the rate of this reaction increase when body temperature increases from 37°C (normal 10 adVC (fever)² (A) 1.15 times (B) 1.20 times (C) 2.0 × 10⁵ times (D) 2.0 times (D) 2.0 times (D) 2.0 times (E) 7.0 kJ/mol (E) (C) 160 kJ/mol (D) (D) 270 kJ/mol (E) The activation energy for the forward reaction is greater than the activation energy for the reverse reaction. (C) At equilibrium, the activation energy for the forward reaction is greater than the activation energy for the reverse reaction. (D) The activation energy for the reverse reaction. (A) 1	58 ((C) a plot of $[NO_2]$ Vs. 1 onsider the reaction 2A +	$ B \rightarrow Products When co$) a plot of [NU ₂] VS. t ncentration of B alone	e was doubled the h	alf-life did not change
 (A) No unit (B) molt⁻¹ s⁻¹ (C) s⁻¹ (D) L mol⁻¹ s⁻¹ 59. For the chemical reaction A → C, a plot of 1/[A] versus time was found to give a straight line with a positive slope. What is the order of reaction? (A) zero (B) first (C) second (D) such a plot cannot reveal the order of reaction increase when body temperature increases from 37°C (normal) to 40°C (fever)? (A) 1.15 times (B) 1.20 times (C) 20× 10⁴ times (D) 2.0 times (D)	JU . C	When the concentration this reaction is:	of A alone was doubled	d, the rate increased	by two times. The u	nit of rate constant for
 59. For the chemical reaction A → C, a plot of 1/[A] versus time was found to give a straight line with a positive siope. What is the order of reaction? (A) zero (B) first (C) second (D) such a plot cannot reveal the order of reaction increases when body temperature increases from 37°C (normal) to 40°C (fever)? (A) 1.15 times (B) 1.20 times (C) 2.0 × 10° times (D) 2.0 times (D) 4.0 time (D) 4.0 times<!--</th--><th></th><th>(A) No unit (B)</th><th>) mol $L^{-1} s^{-1}$ (C</th><th>c) s⁻¹</th><th>(D) $L \mod^{-1} s$</th><th>5-1</th>		(A) No unit (B)) mol $L^{-1} s^{-1}$ (C	c) s ⁻¹	(D) $L \mod^{-1} s$	5-1
 (A) zero (B) first (C) second (D) such a plot cannot reveal the order of reaction increase when body temperature increases from 37°C (normal) to 40°C (fever)? (A) 1.15 times (B) 1.20 times (C) 2 0 × 10° times (D) 2.0 times (D) 2.0 times (D) 2.0 times (D)	59 .	For the chemical reaction slope. What is the order	$A \rightarrow C$, a plot of 1/ of reaction?	[A] versus time was f	found to give a straig	ght line with a positive
 60. If E, for a certain biological reaction is 50 kJ/mol, by what factor (how many times; will the rate of this reaction increases when body temperature increases from 37° (normal) to 40° (fever)? (A) 1.15 times (B) 1.20 times (C) 2.0 × 10° times (D) 2.0 times 61. The isomerization of cyclopropane follows first order kinetics. The rate constant at 700 K is 5.20 × 10° min ⁻¹, and the half-life at 750 K is 2.9. min. Calculate the activation energy for this reaction. (A) 5.07 kJ/mol (C) (C) 160 kJ/mol (D) (D) 270 kJ/mol (C) (C) 160 kJ/mol (D) (D) 270 kJ/mol (E) The tactivation energy for the forward reaction is greater than the activation energy for the reverse reaction. (C) At equilibrium, the activation energy for the forward reaction is greater than the activation energy for the reverse reaction. (D) The activation energy for the reverse reaction is greater than the activation energy for the reverse reaction. (D) The activation energy for the reverse reaction is greater than the activation energy for the forward reaction is a greater than the activation energy for the forward reaction and the enthalpy of reaction is 96 kJ/mol what is E, for the reverse reaction. (B) The activation energy of the reverse reaction is greater than the activation energy for the forward reaction. (A) 120 kJ/mol (B) 20 kJ/mol (C) 95 kJ/mol (C) 95 kJ/mol (D) 120 kJ/mol (E) 4. According to the collision theory, all collisions do not lead to reaction? (A) 1 and 2 (B) 1 and 3 (C) 1 and 4 (D) 2 and 3 (D) 1 and 3 (D) 2 and 3 (D) 1 and 3 (D) 2 and 3 		(A) zero (B) firs	st (C) second	(D) such a p	olot cannot reveal the	e order of reaction
 (A) 1.5 times (B) 1.20 times (C) 2.0 × 10⁶ times (D) 2.0 times (D) 2.0 times (D) 2.0 times 61. The isomerization of cyclopropane follows first order kinetics. The rate constant at 700 K is 6.20 × 10⁻⁴ min⁻¹, and the half-life at 760 K is 2.9.0 min. Calculate the activation energy for this reaction. (A) 5.07 kl/mol (B) (B) 27.0 kl/mol (C) (C) 160 kl/mol (D) (D) 270 kl/mol (E) The activation energy for the forward reaction is greater than the activation energy for the forward reaction is greater than the activation energy for the reverse reaction. (C) At equilibrium, the activation energy for the forward reaction is greater than the activation energy for the reverse reaction. (D) The activation energy for the reverse reaction is greater than the activation energy for the reverse reaction. (D) The activation energy for the reverse reaction is greater than the activation energy for the reverse reaction. (D) The activation energy for the reverse reaction is greater than the activation energy for the reverse reaction. (B) To kl/mol (B) 70 kl/mol (B) 70 kl/mol (B) 70 kl/mol (C) 4 sequilibrium, the activation energy for the reverse reaction. (D) The delivation energy for the reverse reaction is greater than the activation energy for the reverse reaction. (B) To kl/mol (B) 70 kl/mol (C) 55 kl/mol (D) 70 kl/mol (E) According to the collision theory, all collisions do not lead to reaction. (D) Lad energy of two colliding molecules is less than some minimum amount of energy. (A) 1 and 2 (B) 1 and 3 (C) 1 and 4 (D) 2 and 3 (D) 2 and 3 (D) and 3 (D) 1 and 3 (D) 1 and 3 (D) 1 and 3 (D) 1 and 3 (D) 1 and 3 (D) 1 and 3<th>60.</th><th>t E_a for a certain biologica</th><th>al reaction is 50 kJ/mol,</th><th>by what factor (how 27°C (normal) to 40°C</th><th>/ many times) will th</th><th>e rate of this reaction</th>	60.	t E _a for a certain biologica	al reaction is 50 kJ/mol,	by what factor (how 27° C (normal) to 40° C	/ many times) will th	e rate of this reaction
 (a) The isomerization of cyclopropane follows first order kinetics. The rate constant at 700 K is 5 20 × 10⁻ nin, and the half-life at 760 K is 29.0 min. Calculate the activation energy for this reaction. (a) 5.07 kl/mol (b) (c) (c) 160 kl/mol (c) (c) 160 kl/mol (d) The forward reaction is endothermic. (e) The activation energy for the forward reaction is greater than the activation energy for the reverse reaction. (c) At equilibrium, the activation energy for the forward reaction is greater than the activation energy for the reverse reaction. (c) At equilibrium, the activation energy for the forward reaction is greater than the activation energy for the reverse reaction. (d) The activation energy for the reverse reaction is greater than the activation energy for the reverse reaction. (e) The activation energy for the reverse reaction is greater than the activation energy for the reverse reaction. (f) The activation energy for the reverse reaction is greater than the activation energy for the reverse reaction. (g) The activation energy for the reverse reaction is greater than the activation energy for the reverse reaction. (h) The activation energy for the reverse reaction. (c) At equilibrium, the activation energy for the reverse reaction. (d) The activation energy for the reverse reaction. (e) The activation energy for the reverse reaction. (f) The activation energy for the reverse reaction. (f) The activation energy for the reverse reaction. (g) To kl/mol (g) 70 kl/mol (g) 70 kl/mol (h) To collisions do not lead to reaction. Which for reaction why all collisions do not lead to reaction? (h) At and 2 (B) 1 and 3 (C) 1 and 4 (D) 2 and 3 (c) and 3 (D) 2 and 3 (d) 1 and 2 (B) 1 and 3 (C) 1 and 4 (D) 2 and 3 (e) and y (B) 3 only (C) 2 and 3 (D) 1 and 3 		(A) 1 15 times	(B) 1 20 times	37 C (normal) 10 40 C (10 mal) 10 40 C	O^{5} times	(D) 2 0 times
 (a) the balf-life at 760 kis 29.0 min. Calculate the activation energy for this reaction. (a) 5.07 kJ/mol (b) 27.0 kJ/mol (c) (c) 270 kJ/mol (d) The forward reaction system described by the diagram below which statement is true? (e) (f) 27.0 kJ/mol (f) The activation energy for the forward reaction is greater than the activation energy for the reverse reaction. (c) At equilibrium, the activation energy for the reverse reaction. (f) A tradition energy for the reverse reaction is greater than the activation energy for the reverse reaction. (g) The activation energy for the reverse reaction is greater than the activation energy for the reverse reaction. (f) At equilibrium, the activation energy for the reverse reaction is greater than the activation energy for the reverse reaction. (g) The activation energy for the reverse reaction is greater than the activation energy for the forward reaction. (h) The activation energy for the reverse reaction is greater than the activation energy for the reverse reaction. (g) The activation energy for the reverse reaction is greater than the activation energy for the forward reaction. (h) The activation energy for the reverse reaction is greater than the activation energy for the reverse reaction. (g) The activation energy for the reverse reaction is greater than the activation energy for the forward reaction. (h) 120 kJ/mol (c) 30 kJ/mol (d) 70 kJ/mol (e) 70 kJ/mol (f) 70 kJ/mol (g) 70 kJ/mol (g) 70 kJ/mol (g) 70 kJ/mol (h) 120 kJ/mol (h) 120	61. T	he isomerization of cyclon	ronane follows first orde	er kinetics The rate c	onstant at 700 K is 6	(D) 2.0 times 20 × 10 ⁻⁴ min ⁻¹ and
 (A) 5.07 kJ/mol (B) (B) 27.0 kJ/mol (C) 160 kJ/mol (D) (D) 270 kJ/mol (A) The forward reaction system described by the diagram below which statement is true? (A) The forward reaction is endothermic. (B) The activation energy for the forward reaction is greater than the activation energy for the reverse reaction. (C) At equilibrium, the activation energy for the forward reaction is greater than the activation energy for the reverse reaction. (D) The activation energy for the reverse reaction is greater than the activation energy for the reverse reaction. (D) The activation energy for the reverse reaction is greater than the activation energy for the reverse reaction. (B) The activation energy for the reverse reaction is greater than the activation energy for the reverse reaction. (C) The activation energy for the reverse reaction is greater than the activation energy for the reverse reaction. (B) The activation energy for the reverse reaction is greater than the activation energy for the forward reaction. (B) The activation energy for the reverse reaction is greater than the activation energy for the reverse reaction. (B) To the chemical reaction system described by the diagram below if the £, for the forward reaction is 25 kJ/mol. and the enthalpy of reaction is -95 kJ/mol, what is £, for the reverse reaction. (C) 95 kJ/mol (D) -70 kJ/mol (E) 70 kJ/mol (E) 10 kJ (D) 2 and 3 (5. Consider the following	01.1	the half-life at 760 K is 29	0.0 min. Calculate the ac	tivation energy for th	is reaction.	
 (B) (B) 27.0 kl/mol (C) (C) 160 kl/mol (D) (D) 270 kl/mol (A) The forward reaction system described by the diagram below which statement is true (A) The forward reaction is endothermic. (B) The activation energy for the forward reaction is greater than the activation energy for the reverse reaction. (C) At equilibrium, the activation energy for the forward reaction is greater than the activation energy for the reverse reaction. (D) The activation energy for the reverse reaction is greater than the activation energy for the reverse reaction. (D) The activation energy for the reverse reaction is greater than the activation energy for the reverse reaction. (D) The activation system described by the diagram below if the E, for the forward reaction is 25 kl/mol, and the enthalpy of reaction is -95 kl/mol, what is E, for the reverse reaction? (A) 120 kl/mol (B) 70 kl/mol (C) 95 kl/mol (B) 70 kl/mol (C) 95 kl/mol (D) 1 and 3 (C) 1 and 4 (D) 2 and 3 64. According to the collision theory all collisions will not react. (A) 1 and 2 (B) 1 and 3 (C) 1 and 4 (D) 2 and 3 65. Consider the following statements (C) 1 and 3 (D) 1 and 3 (D) 1 and 3 (D) 1 and 3 		(A) 5.07 kJ/mol				
 (c) (c) 160 kJ/mol (d) (d) 270 kJ/mol (e) The forward reaction is endothermic. (e) The activation energy for the forward reaction is greater than the activation energy for the reverse reaction. (f) The activation energy for the reverse reaction. (g) The activation energy for the reverse reaction is greater than the activation energy for the reverse reaction. (f) The activation energy for the reverse reaction is greater than the activation energy for the reverse reaction. (g) The activation energy for the reverse reaction is greater than the activation energy for the reverse reaction. (h) The activation energy for the reverse reaction is greater than the activation energy for the forward reaction. (i) The activation energy for the reverse reaction is greater than the activation energy for the forward reaction. (j) The activation energy for the reverse reaction is greater than the activation energy for the forward reaction. (j) The activation energy for the reverse reaction is greater than the activation energy for the forward reaction. (e) The chemical reaction system described by the diagram below if the E_n for the forward reaction is 25 kJ/mol, and the enthalpy of reaction is 95 kJ/mol, what is E_n for the reverse reaction? (a) 120 kJ/mol (b) 70 kJ/mol (c) 95 kJ/mol (d) 1 and 2 (b) kJ mol collisions do not lead to reaction. Which choice gives both reasons why all collisions do not lead to reaction. Which choice gives both reasons why all collisions do not lead to reaction. Which choice gives both reasons why all collisions between reactant molecules do not lead to reaction? (a) Lock/mol (b) 70 kJ/mol (c) 1 and 4 (b) 2 and 3 (c) 2 and 3 (D) 1 and 3 (c) 2 and 3 (D) 1 and 3 (c) 2 and 3 (D) 1 and 3 <th></th> <th>(B) (B) 27.0 kJ/mol</th> <th></th> <th></th> <th></th> <th></th>		(B) (B) 27.0 kJ/mol				
 (D) (D) 270 kJ/mol 62. For the chemical reaction system described by the diagram below which statement is true? (A) The forward reaction is endothermic. (B) The activation energy for the forward reaction is greater than the activation energy for the forward reaction. (C) At equilibrium, the activation energy for the reverse reaction. (D) The activation energy for the reverse reaction is greater than the activation energy for the reverse reaction. (D) The activation energy for the reverse reaction is greater than the activation energy for the reverse reaction. (D) The activation energy for the reverse reaction is greater than the activation energy for the reverse reaction. (B) The activation energy for the reverse reaction is greater than the activation energy for the forward reaction. (G) So kJ/mol (G) 95 kJ/		(C) (C) 160 kJ/mol				
 62. For the chemical reaction system described by the diagram below which statement is true? (A) The forward reaction is endothermic. (B) The activation energy for the forward reaction is greater than the activation energy for the reverse reaction. (C) At equilibrium, the activation energy for the reverse reaction is greater than the activation energy for the reverse reaction. (D) The activation energy for the reverse reaction is greater than the activation energy for the reverse reaction. (C) At equilibrium, the activation energy for the reverse reaction is greater than the activation energy for the reverse reaction. (D) The activation energy for the reverse reaction is greater than the activation energy for the forward reaction. (G) at equilibrium, the activation energy for the reverse reaction? (A) 120 kd/mol (B) 70 kl/mol (C) 95 kl/mol (D) 70 kl/mol 64. According to the collision theory, all collisions do not lead to reaction. Which choice gives both reasons why all collisions between reactant molecules do not lead to reaction? 1. The total energy of two colliding molecules is less than some minimum amount of energy. (A) 1 and 2 (B) 1 and 3 (C) 1 and 4 (D) 2 and 3 (B) 1 and 2 (B) 1 and 3 (C) 1 and 4 (D) 2 and 3 (C) 2 and 3 (D) 1 and 3 (D) 1 and 3 (D) 1 and 3 (D) 1 and 3 (D) 1 and 3 (D) 2 and 3 		(D) (D) 270 kJ/mol				
 (A) The forward reaction is endothermic. (B) The activation energy for the forward reaction is greater than the activation energy for the reverse reaction. (C) At equilibrium, the activation energy for the forward reaction is equal to the activation energy for the reverse reaction. (D) The activation energy for the reverse reaction is greater than the activation energy for the forward reaction. (B) The demical reaction system described by the diagram below if the E_s for the forward reaction is 25 kJ/mol, and the enthalpy of reaction is -95 kJ/mol, what is E_s for the reverse reaction? (A) 120 kJ/mol (B) 70 kJ/mol (C) 95 kJ/mol (D) -70 kJ/mol (E) -70	62.	For the chemical reaction s	system described by the	diagram below which	statement is true?	Energy
 (B) The activation energy for the forward reaction is greater than the activation energy for the reverse reaction. (C) At equilibrium, the activation energy for the reverse reaction is equal to the activation energy for the reverse reaction. (D) The activation energy for the reverse reaction is greater than the activation energy for the forward reaction. (B) To the chemical reaction system described by the diagram below if the E, for the forward reaction is 25 kJ/mol, and the enthalpy of reaction is -95 kJ/mol, what is E, for the reverse reaction? (A) 120 kJ/mol (B) 70 kJ/mol (C) 95 kJ/mol (D) -70 kJ/mol (E) -70 kJ/mol (D) -70 kJ/mol (E) According to the collision theory, all collisions do not lead to reaction. Which choice gives both reasons why all collisions between reactant molecules do not lead to reaction? 1. The total energy of two colliding molecules is less than some minimum amount of energy. 2. Molecules cannot react with each other unless a catalyst is present. 3. Molecules cannot react with gases. (A) 1 and 2 (B) 1 and 3 (C) 1 and 4 (D) 2 and 3 65. Consider the following statements 1. Energy of activation never negative 3. The negative energy of activation means rate of reaction is independent of temperature 3. Zero activation energy means that the rate of reaction is independent of temperature (A) 2 only (B) 3 only (C) 2 and 3 (D) 1 and 3 	•=-	(A) The forward reaction is	s endothermic.			
 than the activation energy for the reverse reaction. (C) At equilibrium, the activation energy for the forward reaction is equal to the activation energy for the reverse reaction. (D) The activation energy for the reverse reaction is greater than the activation energy for the forward reaction. 63. For the chemical reaction system described by the diagram below if the E_s for the forward reaction is 25 kJ/mol, and the enthalpy of reaction is -95 kJ/mol, what is E_s for the reverse reaction? (A) 120 kJ/mol (B) 70 kJ/mol (C) 95 kJ/mol (D) -70 kJ/mol 64. According to the collision theory, all collisions do not lead to reaction. Which choice gives both reasons why all collisions between reactant molecules do not lead to reaction? 1. The total energy of two colliding molecules is less than some minimum amount of energy. 2. Molecules cannot react with each other unless a catalyst is present. 3. Molecules that are improperly oriented during collision will not react. 4. Solids cannot react with gases. (A) 1 and 2 (B) 1 and 3 (C) 1 and 4 (D) 2 and 3 65. Consider the following statements 1. Energy of activation means rate of reaction increases with temperature 3. Zero activation energy means that the rate of reaction is independent of temperature (A) 2 only (B) 3 only (C) 2 and 3 (D) 1 and 3 		(B) The activation energy f	or the forward reaction	is greater		Reaction Progress
 (C) At equilibrium, the activation energy for the forward reaction is equal to the activation energy for the reverse reaction. (D) The activation energy for the reverse reaction is greater than the activation energy for the forward reaction. 63. For the chemical reaction system described by the diagram below if the E_a for the forward reaction is 25 kl/mol, and the enthalpy of reaction is -95 kl/mol, what is E_a for the reverse reaction? (A) 120 kl/mol (B) 70 kl/mol (C) 95 kl/mol (D) -70 kl/mol 64. According to the collision theory, all collisions do not lead to reaction. Which choice gives both reasons why all collisions between reactant molecules do not lead to reaction? 1. The total energy of two colliding molecules is less than some minimum amount of energy. 2. Molecules cannot react with each other unless a catalyst is present. 3. Molecules that are improperly oriented during collision will not react. 4. Solids cannot react with gases. (A) 1 and 2 (B) 1 and 3 (C) 1 and 4 (D) 2 and 3 65. Consider the following statements 1. Energy of activation never negative 2. The negative energy of activation means rate of reaction increases with temperature 3. Zero activation energy means that the rate of reaction is independent of temperature Which of the statements given above is/ are correct (A) 2 only (B) 3 only (C) 2 and 3 (D) 1 and 3 		than the activation energy	for the reverse reaction			
reaction. (D) The activation energy for the reverse reaction is greater than the activation energy for the forward reaction. 63. For the chemical reaction system described by the diagram below if the E _a for the forward reaction is 25 kJ/mol, and the enthalpy of reaction is -95 kJ/mol, what is E _a for the reverse reaction? (A) 120 kJ/mol (B) 70 kJ/mol (C) 95 kJ/mol (D) -70 kJ/mol (D) -70 kJ/mol (D) -70 kJ/mol (D) -70 kJ/mol (D) -70 kJ/mol (E) -70 kJ/mol (D) -70 kJ/mol (D) -70 kJ/mol (E) -70		(C) At equilibrium, the act	ivation energy for the fo	prward reaction is equ	ual to the activation	energy for the reverse
(b) The activation energy for the reverse reaction is greater than the activation energy for the forward reaction. (a) 120 kl/mol (b) 70 kl/mol (c) 95 kl/mol (d) 70 kl/mol (e) 70 kl/mol (f) 70 kl/mol (g) 70 kl/mol (h) 70 k		reaction.			·	
 (a) 120 kl/mol (b) 120 kl/mol (c) 95 kl/mol (d) 70 kl/mol (e) 70 kl/mol (f) 70 kl/mol (f) 70 kl/mol (g) 70 kl/mol (h) 70 kl/mol (h) 120 kl/mol (h) 70 kl/mol (h) 10 kl/mol (h) 10 kl/mol (h) 1 and 2 (h) 1 and 3 (h) 1 and 4 (h) 2 and 3 (h) 2 and 3 (h) 1 and 2 (h) 1 and 3 (h) 1 and 4 (h) 2 and 3 (h) 1 and 2 (h) 1 and 3 (h) 1 and 4 (h) 2 and 3 (h) 1 and 3 (h) 1 and 4 (h) 2 and 3 (h) 1 and 2 (h) 1 and 3 (h) 1 and 4 (h) 2 and 3 (h) 1 and 3 (h) 1 and 4 (h) 2 and 3 (h) 1 a	62 E	D) The activation energy 1	or the reverse reaction i	s greater than the action of the F	ivation energy for the	e forward reaction.
 (A) 120 kl/mol (B) 70 kl/mol (C) 95 kl/mol (D) -70 kl/mol (D) -70 kl/mol (Energy of two collisions theory, all collisions do not lead to reaction. (Energy of two colliding molecules is less than some minimum amount of energy. (A) 1 and 2 (B) 1 and 3 (C) 1 and 4 (D) 2 and 3 (D) 2 and 3 (D) 1 and 2 (B) 1 and 3 (C) 1 and 4 (D) 2 and 3 (D) 2 and 3 (D) 1 and 2 (D) 1 and 3 	03.1	the enthalov of reaction i	$s = 95 \text{ k} l/mol, \text{ what is } F_{a}$	for the reverse reacti	ion?	
 (B) 70 kJ/mol (C) 95 kJ/mol (D) 70 kJ/mol 64. According to the collision theory, all collisions do not lead to reaction. Which choice gives both reasons why all collisions between reactant molecules do not lead to reaction? 1. The total energy of two colliding molecules is less than some minimum amount of energy. 2. Molecules cannot react with each other unless a catalyst is present. 3. Molecules that are improperly oriented during collision will not react. 4. Solids cannot react with gases. (A) 1 and 2 (B) 1 and 3 (C) 1 and 4 (D) 2 and 3 65. Consider the following statements 1. Energy of activation never negative 2. The negative energy of activation means rate of reaction increases with temperature 3. Zero activation energy means that the rate of reaction is independent of temperature Which of the statements given above is/ are correct (A) 2 only (B) 3 only (C) 2 and 3 (D) 1 and 3 		(A) 120 kJ/mol				
 (C) 95 kJ/mol 64. According to the collision theory, all collisions do not lead to reaction. Which choice gives both reasons why all collisions between reactant molecules do not lead to reaction? 1. The total energy of two colliding molecules is less than some minimum amount of energy. 2. Molecules cannot react with each other unless a catalyst is present. 3. Molecules that are improperly oriented during collision will not react. 4. Solids cannot react with gases. (A) 1 and 2 (B) 1 and 3 (C) 1 and 4 (D) 2 and 3 65. Consider the following statements 1. Energy of activation never negative 2. The negative energy of activation means rate of reaction increases with temperature 3. Zero activation energy means that the rate of reaction is independent of temperature Which of the statements given above is/ are correct (A) 2 only (B) 3 only (C) 2 and 3 (D) 1 and 3 		(B) 70 kJ/mol				Energy
 (D) 70 kJ/mol 64. According to the collision theory, all collisions do not lead to reaction. Which choice gives both reasons why all collisions between reactant molecules do not lead to reaction? 1. The total energy of two colliding molecules is less than some minimum amount of energy. 2. Molecules cannot react with each other unless a catalyst is present. 3. Molecules that are improperly oriented during collision will not react. 4. Solids cannot react with gases. (A) 1 and 2 (B) 1 and 3 (C) 1 and 4 (D) 2 and 3 65. Consider the following statements 1. Energy of activation never negative 2. The negative energy of activation means rate of reaction increases with temperature 3. Zero activation energy means that the rate of reaction is independent of temperature Which of the statements given above is/ are correct (A) 2 only (B) 3 only (C) 2 and 3 (D) 1 and 3 		(C) 95 kJ/mol				
 64. According to the collision theory, all collisions do not lead to reaction. Which choice gives both reasons why all collisions between reactant molecules do not lead to reaction? The total energy of two colliding molecules is less than some minimum amount of energy. Molecules cannot react with each other unless a catalyst is present. Molecules that are improperly oriented during collision will not react. Solids cannot react with gases. (A) 1 and 2 (B) 1 and 3 (C) 1 and 4 (D) 2 and 3 65. Consider the following statements Energy of activation never negative The negative energy of activation means rate of reaction is independent of temperature Zero activation energy means that the rate of reaction is independent of temperature Which of the statements given above is/ are correct (A) 2 only (B) 3 only (C) 2 and 3 		(D) —70 kJ/mol				Reaction Progress
 Which choice gives both reasons why all collisions between reactant molecules do not lead to reaction? 1. The total energy of two colliding molecules is less than some minimum amount of energy. 2. Molecules cannot react with each other unless a catalyst is present. 3. Molecules that are improperly oriented during collision will not react. 4. Solids cannot react with gases. (A) 1 and 2 (B) 1 and 3 (C) 1 and 4 (D) 2 and 3 65. Consider the following statements Energy of activation never negative The negative energy of activation means rate of reaction increases with temperature 3. Zero activation energy means that the rate of reaction is independent of temperature Which of the statements given above is/ are correct (A) 2 only (B) 3 only (C) 2 and 3 (D) 1 and 3 	64. A	ccording to the collision th	eory, all collisions do no	t lead to reaction.		
 2. Molecules cannot react with each other unless a catalyst is present. 3. Molecules that are improperly oriented during collision will not react. 4. Solids cannot react with gases. (A) 1 and 2 (B) 1 and 3 (C) 1 and 4 (D) 2 and 3 65. Consider the following statements Energy of activation never negative The negative energy of activation means rate of reaction increases with temperature 3. Zero activation energy means that the rate of reaction is independent of temperature Which of the statements given above is/ are correct (A) 2 only (B) 3 only (C) 2 and 3 	V	nich choice gives both rea	sons why all collisions be	etween reactant mole	ecules do not lead to	reaction?
 3. Molecules that are improperly oriented during collision will not react. 4. Solids cannot react with gases. (A) 1 and 2 (B) 1 and 3 (C) 1 and 4 (D) 2 and 3 65. Consider the following statements 1. Energy of activation never negative 2. The negative energy of activation means rate of reaction increases with temperature 3. Zero activation energy means that the rate of reaction is independent of temperature Which of the statements given above is/ are correct (A) 2 only (B) 3 only (C) 2 and 3 (D) 1 and 3 		2 Molecules cannot react	with each other unless a	catalyst is present	in aniounit of energy.	
 4. Solids cannot react with gases. (A) 1 and 2 (B) 1 and 3 (C) 1 and 4 (D) 2 and 3 65. Consider the following statements Energy of activation never negative The negative energy of activation means rate of reaction increases with temperature Zero activation energy means that the rate of reaction is independent of temperature Which of the statements given above is/ are correct (A) 2 only (B) 3 only (C) 2 and 3 (D) 1 and 3 		3. Molecules that are impr	operly oriented during c	ollision will not react.		
 (A) 1 and 2 (B) 1 and 3 (C) 1 and 4 (D) 2 and 3 65. Consider the following statements 1. Energy of activation never negative 2. The negative energy of activation means rate of reaction increases with temperature 3. Zero activation energy means that the rate of reaction is independent of temperature Which of the statements given above is/ are correct (A) 2 only (B) 3 only (C) 2 and 3 (D) 1 and 3 		4. Solids cannot react with	gases.			
 65. Consider the following statements Energy of activation never negative The negative energy of activation means rate of reaction increases with temperature Zero activation energy means that the rate of reaction is independent of temperature Which of the statements given above is/ are correct (A) 2 only (B) 3 only (C) 2 and 3 (D) 1 and 3 		(A) 1 and 2	(B) 1 and 3	(C) 1 and 4	(D) 2 and 3	
 Energy of activation never negative The negative energy of activation means rate of reaction increases with temperature Zero activation energy means that the rate of reaction is independent of temperature Which of the statements given above is/ are correct (A) 2 only (B) 3 only (C) 2 and 3 (D) 1 and 3 	65. C	onsider the following state	ements			
 2. The negative energy of activation means rate of reaction increases with temperature 3. Zero activation energy means that the rate of reaction is independent of temperature Which of the statements given above is/ are correct (A) 2 only (B) 3 only (C) 2 and 3 (D) 1 and 3 		1. Energy of activation ne	ever negative			
 3. Zero activation energy means that the rate of reaction is independent of temperature Which of the statements given above is/ are correct (A) 2 only (B) 3 only (C) 2 and 3 (D) 1 and 3 		2. The negative energy o	f activation means rate	of reaction increases w	with temperature	
Which of the statements given above is/ are correct (A) 2 only (B) 3 only (C) 2 and 3 (D) 1 and 3		3. Zero activation energy	y means that the rate of	reaction is independe	ent of temperature	
(A) 2 only (B) 3 only (C) 2 and 3 (D) 1 and 3	۷	Vhich of the statements give	ven above is/ are correct	t		
		(A) 2 only	(B) 3 only	(C) 2 and 3	(D) 1 and 3	

7 RAJSI CHEMISTRY POINT, NEAR GOPALPURA FLYOVER, JAIPUR Visit us @ www.rajsichemistrypoint.com

66.	A first order decomposition reaction completes its 50% in 20 minutes. In what time it does complete its 93.75%
	(A) 45 min. (B) 50 min. (C) 60 min. (D) 80 min.
67.	If initial concentration is reduced to its 1/4 th in a zero order reaction, the time taken for half of the reaction
	completion
	(A) Remains same (B) becomes 4 times (C) becomes 1/4th (D) becomes double
68.	Consider an endothermic reaction, $X \rightarrow Y$ with activation energies E_b and E_f respectively for the backward and
	forward reactions, respectively. In general,
	(A) $E_b < E_f$ (B) $E_b > E_f$
	(C) $E_b = E_f$ (D) There is no definite relation between E_b and E_f
69.	$t_{1/4}$ can be taken as the time taken for the concentration of a reactant to drop to 3/4 of its initial value. If rate
	constant for a first order reaction is k, then $t_{1/4}$ can be written as
70	(A) $0.01/k$ (B) $0.29/k$ (C) $0.69/k$ (D) $0.75/k$
70.	taken for the concentration to change from 0.1 M to 0.025 M is
	(A) 7.5 min (B) 15 min (C) 30 min (D) 60 min
71.	The rate equation for the reaction: $2A + B \rightarrow C$ is found to be: rate = k [A] [B]. The correct statement in relation to
	this reaction is that the
	(A) Units of k must be s^{-1} (B) $t_{1/2}$ is constant
	(C) Rate of formation of C is twice the rate of disappearance of A
	(D) Value of k is independent of the initial concentration of A and B.
72.	The velocity constant of a reaction at 290° K was found to be 3.2×10^{-3} S ⁻¹ . When the temperature is raised to 310°
	K, it will be about
	(A) 9.6×10^{-5} (B) 1.28×10^{-2}
70	(C) $6.4 \times 10^{\circ}$ (D) $3.2 \times 10^{\circ}$
73.	The rate law for a reaction between the substances A an B is given by Rate = K [A] [B] On doubling the concentration of A and balving the concentration of B, the ratio of the new rate to the earlier rate
	of reaction will be
	(A) m + n (B) n - m (C) $2^{(n-m)}$ (D) $\overline{2^{m+n}}$
74.	When a bio chemical reaction is carried out in laboratory outside the human body in the absence of enzyme, then
	the rate of reaction obtained is 10° times, than activation energy of Reaction in the presence of enzyme is:
	(A) 6/KI (B) P is required
	(C) Different norm, L_a obtained in laboratory
75.	In an endothermic equilibrium reaction if k_1 and k_2 are the rate constants of forward and backward reaction
	respectively at temperature T ^o C and k_1' and k_2' at (T+10 ^o)C then which of the following is correct
	(A) $k_1'/k_1 = k_2'/k_2$ (B) $k_1'/k_1 < k_2'/k_2$ (C) $k_1'/k_1 > k_2'/k_2$ (D) None of the Above
76.	In a Zero Order Reaction $t_{rrg} = xt_{rg}$ Then Value of x will be
70.	(A) 2 (B) $3/2$ (C) $2/3$ (D) 10
77.	For which of the following reaction the pre exponential factor (A) does not depends on temperature,
	(A) Atom + Atom==Linear TS==Product
	(B) Atom + Linear Molecule==Linear TS==Product
	(C) Atom + Linear Molecule==Non-Linear TS==Product
	(D) Linear molecule + Linear Molecule==Linear TS==Product
79	For the chemical Reaction $CO_2 + H_2 == Non-Linear TS === CO_2 + H_2O_2$ The dependency of Collision Easter on
70.	temperature is
	(A) T (B) $1/T$ (C) $1/T^2$ (D) $1/T^{3/2}$
	RAJSI CHEMISTRY POINT, NEAR GOPALPURA FLYOVER, JAIPUR Visit us @ www.rajsichemistrypoint.com

79 .	The rate constant of a chemical reaction depends on temperature according to the relation k=ATexp[-E _o /RT]. The activation energy of the reaction is equal to,											
	(A) E _o + RT		(B) E _o + 1,	/RT			(C)	E _o + 2RT	(D) E _c)	
80.	Entropy of activa	tion (ΔS	[#]) for a b	oimolecu	ılar react	ion can be	e determine	ed by,				
	(A) Slope of "Ink	vs T" Plo	ot		(8	3) Slope o	$f \ln\left(\frac{k}{T}\right) vs$.T				
	(C) Intercept of "	lnk vs T"	' Plot		([D) interce	pt of $\ln\left(\frac{k}{T}\right)$	$\Big) vs$	$\frac{1}{r}$			
81.	Two first order reactions have half lives in the ratio 3:2. The value of the ratio of time interval t_1 : t_2 will be (where t_1 is the time period for 25% completion of the first reaction and t_2 for 75% completion of the second reaction) (A) 0.311:1 (B) 0.420:1 (C) 0.273:1 (D) 0.199:1											
82.	Concentration of	reactant	t molecu	le in firs	t order r	eaction re	duced to 1	le^2 af	ter (Average L	fe=1/k		
	(A) One average (C) Three average	Life e Life			(E)	B) two ave	erage Life erages Life					
83.	For the reaction	A + 2B		Produc	t, (starte	d with the	e concentra	ation	taken in stoicl	niometric pr	oportio	n) the
	experimentally e	stablishe	ed rate la	aw is, - c	I[A]/dt =	k[A] ^{1/2} [B] ¹	^{1/2} . The half	life o	f the reaction	would be		,
	(A) 0.693/k	(B) 0.693	/v2.k	(0	C) 0.693/v	/3.k		(D) 0.693	/1/k	p.	
84.	The reaction A —	→ Pr	oduct,	is zero c	order whi	ile B —	product is	s first	order. If the r	ate constan [.]	t (k) for	these
	reactions are nur	merically	/ same, t	hen for	what cor	ncentratio	n of A (in N	1) the	half life of two	o reactions v	vill be sa	ime,
	(A)2	((B)ln2			(C)2ln2		(D)2log	2		
85 . ⁻	The concentration	n of R in t	the reac	tion R —	→ P, w	as measui	red as funct	tion o	f time and foll	owing data a	are obtai	ined:
ŀ	[R] in Molar	1.0	0.75	0.40	0.10							
	Time (minutes)	0.0	0.05	0.12	0.18							
	Ine order of the	reaction	n Will De, DV1						(ח)			
	(A)Z	4	DJI			(C)			(0)5			
				****	*****	******	********	****	* * * *			
					An	swer Key	y Format					
	1.	14.	A	27.		40.		53.	6	6.	79.	
	2.	15.		28.		41.		54.	6	57.	80.	
	3.	16.		29.		42.		55.	e	68.	81.	
	4.	17.		30.		43.		56.	6	9.	82.	
	5.	18.		31.		44.		57.	7	0.	83.	
	6.	19.		32.		45.		58.	7	'1.	84.	
	7.	20.		33.		46.		59.	7	2.	85.	
	8.	21.		34.		47.		60.	7	'3.	86.	
	9.	22.		35.		48.		61.	7	4.	87.	
	10.	23.		36.		49.		62.	7	'5.	88.	
	11.	24.		37.		50.		63.	7	6.	89.	
	12.	25.		38.		51.		64.	7	7.	90.	
	13.	26.		39.		52.		65.	7	/8.	91.	

9 RAJSI CHEMISTRY POINT, NEAR GOPALPURA FLYOVER, JAIPUR Visit us @ www.rajsichemistrypoint.com